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a b s t r a c t

In this work, we discuss two different but related aspects of the development of efficient
discontinuous Galerkin methods on hybrid element grids for the computational modeling
of gas dynamics in complex geometries or with adapted grids. In the first part, a recursive
construction of different nodal sets for hp finite elements is presented. They share the prop-
erty that the nodes along the sides of the two-dimensional elements and along the edges of
the three-dimensional elements are the Legendre–Gauss–Lobatto points. The different
nodal elements are evaluated by computing the Lebesgue constants of the corresponding
Vandermonde matrix. In the second part, these nodal elements are applied within the
modal discontinuous Galerkin framework. We still use a modal based formulation, but
introduce a nodal based integration technique to reduce computational cost in the spirit
of pseudospectral methods. We illustrate the performance of the scheme on several large
scale applications and discuss its use in a recently developed space-time expansion discon-
tinuous Galerkin scheme.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

While discontinuous Galerkin (DG) methods were first proposed in the early 1970s in [36] it was not until the more re-
cent development, initiated in the work of Cockburn and Shu [9,7,10–12], that these methods have matured into a powerful
computational tool for the solution of systems of conservation laws and the equations of gas dynamics [4,13]. The extension
to problems of viscous gas dynamics was initiated in [3,5] and this again has led to several related formulations [17,29,35]
for the compressible Navier–Stokes equations. Many examples and further details along these lines can be found in [8,26,30].

In spite of these significant advances over the last decade, discontinuous Galerkin methods still suffer from being too
expensive when compared to more traditional methods such as finite volume methods. This is particularly true for viscous
. All rights reserved.
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problems, where the common solution approach is based on a mixed finite element formulation, which was introduced in [3]
and extended to higher order problems in [40,41]. In recent developments for the DG discretization of second order terms
[15,16,32], the introduction of auxiliary variables is circumvented by the use of two partial integrations, or by multiple partial
integrations for higher order operators [6].

Apart from this, however, a major computational cost is found in the traditional use of full order integration in the basic
implementation, leading to an excessive computational cost for nonlinear problems. Deriving inspiration from the classic
spectral methods [22] it is natural to consider the use of a nodal basis, leading to a formulation which in spirit shares much
with a spectral collocation formulation in which the boundary conditions are imposed weakly. Such methods, often known
as spectral penalty methods, have been developed for the compressible Navier–Stokes equations in [18–20] and extended to
non-tensorial elements in [21,23].

The main advantages of such a formulation are found in the exact reduction to the standard discontinuous Galerkin for-
mulation for linear problems, hence ensuring the accuracy for smooth problems, and the quadrature free approach for non-
linear problems, leading to a dramatic reduction in the computational cost. Furthermore, the use of a nodal basis with the
correct structure of the points along the edges and faces leads to a natural separation of the basis into boundary and internal
degrees of freedom. This becomes particularly beneficial for schemes using a high-order basis. Although the loss of exact
integration opens up for the possibility of instabilities driven by aliasing, this is a well known and well understood phenom-
enon within the community of spectral methods [22]. We shall return to this concern briefly later.

One of the limitations of past nodal based formulations and schemes is the reliance on either cubic or tetrahedral element
shapes. While these suffice in many cases, for problems with significant geometric flexibility one is tempted to also use more
general types of elements such as prisms and pyramids.

In this work, we explore how one constructs such general nodal elements, using a nodal recursive construction, and opti-
mize these for maximum accuracy by minimizing the Lebesgue constant of the associated multivariate Lagrange polynomial.
This is discussed in Section 2 and sets the stage for Section 3 where we discuss in detail the use of these elements in a dis-
continuous Galerkin scheme and return to the issues of aliasing and the potential for instabilities caused by this. We shall
also discuss how nodal elements can be used with advantage in an already existing scheme based on a modal expansion and
finally we use a recently developed explicit space-time discretization to arrive at the fully discrete explicit scheme. In Section
4 we demonstrate how this general scheme, employing polymorphic elements and local time-stepping, can be used with
benefit for both linear and nonlinear wave problems and, finally, the full three-dimensional compressible Navier–Stokes
equations. Most of the tests illustrate the potential for a four fold reduction in computational time without impacting the
accuracy by using the nodal based approach for large scale simulations. Section 5 concludes with a few general remarks
and outlook toward future work.

2. The nodal elements

We will first focus on defining different sets of high-order basis functions for a given grid cell Q � Rd. We introduce the
monomial basis fpigi¼1;...;N for the space of polynomials with degree less than or equal than p, where every basis function pi is
written as
pið~xÞ ¼ x
ai

1
1 � � � x

ai
d

d with 0 6 ai
1 þ � � � þ ai

d 6 p: ð1Þ
The dimension N of this space depends on the order p and on the spatial dimension d of the grid cell Q and is given by
N ¼ Nðp;dÞ ¼ ðpþ dÞ!
d!p!

: ð2Þ
Based on a monomial basis fpigi¼1;...;N expanded in the barycenter of the grid cell Q and its geometry the construction of an
orthonormal basis fuigi¼1;...;N using Gram–Schmidt orthogonalization is straight forward. This basis set is characterized by
the property
Z

Q
uið~xÞujð~xÞd~x ¼ dij; ð3Þ
which holds for arbitrary grid cell shapes. With this modal basis we are now able to proceed to define a set of nodal basis
functions. Given a set of interpolation points f~njgj¼1;...;MI

� Q , we can construct the nodal Lagrange basis fwjgj¼1;...;MI
and

the nodal degrees of freedom ~u defined by the conditions
wjð~niÞ ¼ dij;

uð~xÞ :¼
XN

j¼1

ûjujð~xÞ¼
!
XMI

i¼1

~uiwið~xÞ:
ð4Þ
Combining these conditions yields the transformations
Vû ¼ ~u and VTw ¼ /; ð5Þ
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where we introduce the generalized Vandermonde matrix V with entries
Vij ¼ ujð~niÞ; i ¼ 1; . . . ;MI; j ¼ 1; . . . ;N: ð6Þ

The inverse of the Vandermonde matrix is not uniquely defined as MI–N. If one is interested in avoiding this problem, one
has to extend the modal basis from dimension N to dimension MI . We refer to Lörcher and Munz [33] for a strategy to find a
basis extensions for non-tensor product interpolation on a cartesian grid. However, the extension of this approach to the
general case is not straightforward, as the non-singularity of the Vandermonde matrix is not guaranteed. To overcome this
issue a singular value decomposition based strategy is used to define the following pseudo-inverse transformations
û ¼ V�1~u and w ¼ V�T/: ð7Þ

Using the pseudo-inverse Vandermonde matrix, condition (4) is only satisfied in the least squares sense. Thus, if we define the
polynomial approximation of a function f as
f ð~xÞ � fIð~xÞ :¼
XMI

j¼1

f ð~njÞwjð~xÞ :¼ wT~f ; ð8Þ
the nodal degree of freedom ~f j ¼ f ð~njÞ is not the value of the interpolation fIð~xÞ at the node~x ¼~nj, as wjð~niÞ–dij. Furthermore,
the modal approximation
f ð~xÞ � fMð~xÞ :¼
XN

j¼1

f̂ j/jð~xÞ with f̂ ¼ V�1~f ; ð9Þ
is in the general case not equal to the nodal approximation
fIð~xÞ – f Mð~xÞ: ð10Þ
A good measure of the quality of such a polynomial approximation is given by the Lebesgue constant K, defined as
K :¼ max
~x2Q

XMI

j¼1

jwjð~xÞj: ð11Þ
With this definition one easily realizes that
kf � fIk1 6 ð1þKÞkf � f �k1; ð12Þ
where k:k1 is the usual maximum norm and f � is the best approximating polynomial of f. As the nodal basis fwjgj¼1;...;MI
de-

pends only on the interpolation points f~nigi¼1;...;MI
, we next focus on the construction of nodal sets which minimize the

growth of the Lebesgue constant with order p for different grid cell shapes. We restrict our attention to sets of interpolation
points XI :¼ f~nigi¼1;...;MI

with the following characteristics:

� The interpolation based on these points is of order p for functions defined in the volume and for functions defined on the
grid cell surfaces. This guarantees that the basis separates into boundary and interior components.

� The distribution of the points reflects the possible symmetries of the grid cell.
� The size of the nodal set MI P N depends on the order p, the dimension d and the shape of the grid cell.

2.1. One-dimensional node distributions

For an interval, pþ 1 points have to be chosen. There may be a number of different distributions of the pþ 1 points with
the restriction that the endpoints are included. For instance, one can choose equidistant (E) points, Chebychev–Gauss–Lob-
atto points or Legendre–Gauss–Lobatto (LGL) points. We choose for every side in 2D and edge in 3D the LGL node distribu-
tion, as these are known to have a good Lebesgue constant K. An extended discussion of the one-dimensional case can be
found in [24]. Based on the LGL node distribution we define the following warp function for x 2 ½0; 1�
wpðxÞ ¼
Xpþ1

j¼1

nLGL
j wE

j ðxÞ; ð13Þ
where fnLGL
j gj¼1;...;pþ1 are the Legendre–Gauss–Lobatto points and fwE

j gj¼1;...;pþ1 the Lagrange polynomials based on equidistant
points. According to [39], wpðxÞ is a ðpþ 1Þth order approximation to the function which maps the ‘bad’ points (E) to the
‘good’ points (LGL).

2.2. Two-dimensional node distributions

In two space dimensions we split the set of interpolation points XIðpÞ into two parts: The set of points that live in the
interior of the cell and the set of points that live on the surface, named XS

I ðpÞ. The set XS
I ðpÞ is defined such that it contains
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pþ 1 LGL points for each side of the grid cell surface. This guarantees that the nodal approximation on the whole surface is of
order pþ 1 and a separated basis by polynomial uniqueness. We note that using only these surface points for the approxi-
mation within the volume, the corresponding Vandermonde matrix is non-singular for p up to a value p�, which depends on
the shape of the grid cell. The value for p� is 2 and 3 for triangles and quadrilaterals, respectively. Hence, for an interpolation
with p > p�, additional points in the interior of the grid cell are needed. The definition of these interpolation points can be
done in the following recursive way
Fig. 1.
nesting

Fig. 2.
differen
XIðpÞ :¼
; for p < 0;
f~xbaryg for p ¼ 0;

MrðXS
I ðpÞÞ [XIðp� p� � 1þ p2DÞ for p > 0:

8><
>: ð14Þ
We notice that the interior nodes consist of nested and shrunk surface points. The mappingMr determines how the surface
point sets XS

I ðpÞ are nested and shrunk for every recursion step r, e.g. the mapping for the first recursion r ¼ 0 is the identity,
as the first points of the set XS

I ðpÞ are lying on the real surface of the grid cell and thus will not be shrunk. A simple approach
for the mappingMr for r > 0 would be one which yields an equidistant nesting. However, it is well known that the Lebesgue
constant of the corresponding nodal basis is improved when the node distribution is more dense close to the boundary of the
grid cell. Thus, to improve the nodal set, we propose to use a mapping which yields LGL-type nesting. In this work the warp
function (13) is used to define the following mapping:
Mrð~nÞ ¼ ð~n�~xbaryÞaðrÞ þ~xbary;

aðrÞ ¼ 1� 2wpðr¼0Þ

r
maxð1;~r � 1Þ

� �
:

ð15Þ
where ~n 2 XS
I ðpÞ;~xbary denotes the barycenter of the grid cell, r the recursion level and ~r is given as
~r ¼
2rmax � 1; if pðr¼rmaxÞ ¼ 0;
2rmax; otherwise;

�
ð16Þ
with the maximum number of recursions rmax and the polynomial degree at the last recursion level pðr¼rmaxÞ. Another approach
is to start with the pure equidistant point distribution and optimize the nodal set with electrostatic considerations, as pro-
Quadrilateral with p ¼ 9ðp2D ¼ 0Þ. From left to right: pure equidistant distribution, LGL points with equidistant nesting, LGL points with LGL-type
and optimized points.

p

M
I
/N

1 5 9 13 17 21

π2D=2
π2D=1
π2D=0

3.0

1.5

1.0

p

M
I
/N

1 5 9 13 17 21

π2D=3
π2D=2
π2D=1
π2D=0

4.0

2.0

1.0

1.3

Ratio of the number MIðpÞ of interpolation points and the dimension NðpÞ of the polynomial space as a function of the polynomial degree p for
t parameters p2D , left for triangles and right for quadrilaterals. The limits for p!1 are indicated with a dashed line.
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posed by Hesthaven [24]. To illustrate these different strategies, we plot the corresponding node distributions of the
p ¼ 9ðp2D ¼ 0Þ quadrilateral in Fig. 1. The set with a purely equidistant distribution yields a Lebesgue constant K ¼ 97,
whereas the LGL points with equidistant nesting yields K ¼ 44. Using LGL points and LGL-type nesting yields a Lebesgue con-
stant of 21, which is slightly greater than K ¼ 17 for the electro-static optimized points. Although the electro-static opti-
mized interpolation points yield the best Lebesgue constant, we use the LGL points with LGL-type nesting in the
computations shown below, as these point sets are easy and straight forward to implement. An important parameter in
the recursion formula (14) is the integer p2D which can be used to tune the relation between the interpolation quality
and the number of points. For p2D ¼ 0, as considered up to now, algorithm (14) yields the smallest possible number of points
and thus, the most efficient scheme in terms of the computational effort. However, we observed that in some cases, espe-
cially for quadrilaterals, the use of a few more points pays off in terms of a dramatically improved accuracy. The parameter
p2D with 0 6 p2D 6 p� can be used to control the number of recursions in (14). Fig. 2 shows the ratio of the overall interpo-
lation points MIðpÞ and the number NðpÞ of the basis functions as a function of the polynomial degree p for different values of
p2D. The plot indicates that for triangles and p2D ¼ 0 the number is always optimal. For quadrilaterals and p2D ¼ 0 the num-
ber of interpolation points converges to the optimum with increasing p. In all the calculations presented in the following we
use p2D ¼ 0 for triangles and p2D 2 f0;1g for quadrilaterals. For this type of interpolation points the corresponding Lebesgue
constants K are listed in Table 1.

2.3. Three-dimensional node distributions

The definition of the three-dimensional set of interpolation points is done analogously to that of the two-dimensional
case. Again, the set XIðpÞ is split into two parts, where XS

I ðp;p2DÞ denotes the set of points on the surface. The recursion algo-
rithm reads as follows:
Table 1
Lebesgu

p

1
2
3
4
5
6
7
8
9
10
11
12
XIðpÞ :¼
; for p < 0;
f~xbaryg for p ¼ 0;

MrðXS
I ðp;p2DÞÞ [XIðp� p� � 1þ p3DÞ for p > 0:

8><
>: ð17Þ
In this work, the 3D standard shapes, namely tetrahedra, hexahedra, pentahedra (prisms) and pyramids are considered. The
surfaces of these standard grid cells consist of triangles and quadrilaterals. Thus, for the definition of the surface point set
XS

I ðp;p2DÞwe can use the two-dimensional nodal points from the previous subsection. Again, using surface points only yields
non-singular interpolation up to a polynomial degree 0 < p 6 p�. The value of p� is 3 for the tetrahedron, 5 for the hexahe-
dron and 4 for the pentahedron and pyramid, respectively. We note that these values are independent of the choice of the
parameter p2D. Although the number of surface points increases with greater p2D, the rank of the volume interpolation does
not. We thus use the recursive nesting strategy (17) and introduce an additional parameter p3D, which controls the number
of recursions. The mappingMr is again used to shrink the new nested surface points in a LGL-type manner (15). In Fig. 3 the
ratios of the interpolation points MIðpÞ between the optimal number NðpÞ for different parameters p :¼ ðp3D;p2DÞ are plotted.
Again, for tetrahedra and p ¼ ð0;0Þ the number of interpolation points are always optimal, whereas for other grid cell shapes
the ratio converges to 1 for p!1. Compared to the 2D case the convergence for the 3D case is slower, however the mag-
nitudes of the ratios are still reasonable. The corresponding Lebesgue constants are listed in Tables 2 and 3.

3. Application in discontinuous Galerkin methods

In the following we will discuss in detail how to construct a discontinuous Galerkin (DG) scheme using the nodal ele-
ments developed above. To keep matters simple we restrict the discussion to a scalar conservation law of the form
e constants K and number of interpolation points MI for the two-dimensional interpolation points.

MI K MI K MI K

Tri ðp2D ¼ 0Þ Quad ðp2D ¼ 0Þ Quad ðp2D ¼ 1Þ

3 1.0 4 1.5 4 1.5
6 1.7 8 3.0 8 3.0
10 2.1 12 4.0 13 3.2
15 3.8 17 4.2 20 5.3
21 3.2 24 5.8 28 4.6
28 4.6 32 7.5 37 4.5
36 6.8 40 15.3 48 5.1
45 7.5 49 14.5 60 7.5
55 8.6 60 21.0 73 8.0
66 11.2 72 28.6 88 10.8
78 18.8 84 61.8 104 14.8
91 20.2 97 62.7 121 15.4
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Fig. 3. Ratio of the number MIðpÞ of interpolation points and the dimension NðpÞ of the polynomial space as a function of the polynomial degree p for
hexahedron (top left), pentahedron (top right), pyramid (bottom left) and tetrahedron (bottom right) and different parameters p ¼ ðp3D;p2DÞ. The limits for
p!1 are indicated with dashed lines.

Table 2
Lebesgu

Tetrahe

MI

p ¼ ð0;

Hexahe
MI

p ¼ ð0;
MI

p ¼ ð1;
MI

p ¼ ð0;
MI

p ¼ ð1;
MI

p ¼ ð2;
MI

p ¼ ð2;
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ut þ ~r �~f ðuÞ ¼ 0; ð18Þ
with appropriate initial and boundary conditions in a domain X	 ½0; T� � Rd 	 Rþ0 . The base of the semi-discrete DG formu-
lation is a local weak formulation, which is obtained for a grid cell Q � X by multiplying (18) by a test function / ¼ /ð~xÞ and
integrating over Q
e constants K and number of interpolation points MI for the 3D interpolation sets with different parameters p ¼ ðp3D;p2DÞ.

dron/p 1 2 3 4 5 6 7 8 9 10 11

4 10 20 35 56 84 120 165 220 286 364
0Þ=K 1.0 2.0 2.9 4.0 6.4 7.9 10.8 17.6 22.0 34.8 36.5

dron/p 1 2 3 4 5 6 7 8 9 10 11
8 20 32 50 80 117 160 214 280 358 448

0Þ=K 1.5 5.0 6.4 8.8 17.0 20.3 41.5 47.6 103.6 201.3 454.2
8 20 32 50 81 124 172 226 298 389 492

0Þ=K 1.5 5.0 6.4 8.8 11.6 35.6 37.1 46.6 103.2 113.5 148.2
8 20 38 68 104 147 208 280 364 472 592

1Þ=K 1.5 5.0 4.8 15.6 11.2 13.0 30.4 32.7 52.0 111.6 323.5
8 20 38 68 105 154 220 298 394 509 642

1Þ=K 1.5 5.0 4.8 15.6 8.9 18.1 13.3 31.0 49.4 58.0 78.0
8 20 32 51 88 136 184 245 336 444 552

0Þ=K 1.5 5.0 6.4 7.8 9.1 14.0 30.2 28.3 40.2 56.9 124.2
8 20 38 69 112 166 238 329 438 570 726

1Þ=K 1.5 5.0 4.8 5.9 8.9 11.1 12.5 20.3 21.2 31.5 61.2



Table 3
Lebesgue constants K and number of interpolation points MI for the 3D interpolation sets with different parameters p ¼ ðp3D;p2DÞ.

Pentahedron/p 1 2 3 4 5 6 7 8 9 10 11

MI 6 15 26 42 67 101 141 188 248 322 407
p ¼ ð0;0Þ=K 1.7 3.7 4.4 6.0 8.1 21.4 22.7 42.3 96.7 112.1 175.2
MI 6 15 26 43 72 110 152 205 278 365 458
p ¼ ð1; 0Þ=K 1.7 3.7 4.4 5.9 10.0 11.2 23.4 24.2 61.6 74.2 167.8
MI 6 15 29 51 79 116 165 224 296 382 482
p ¼ ð0;1Þ=K 1.7 3.7 4.1 9.4 7.2 15.6 15.0 34.2 70.8 86.8 117.6
MI 6 15 29 52 84 125 179 247 329 428 545
p ¼ ð1;1Þ=K 1.7 3.7 4.1 5.7 10.0 8.7 13.0 17.2 33.3 34.5 60.2

Pyramid/p 1 2 3 4 5 6 7 8 9 10 11
MI 5 13 25 42 66 98 138 187 247 319 403
p ¼ ð0;0Þ=K 1.5 3.0 4.2 6.8 9.7 15.6 24.5 39.7 71.4 146.9 366.2
MI 5 13 25 43 70 106 150 205 275 359 455
p ¼ ð1; 0Þ=K 1.5 3.0 4.2 5.3 7.2 11.4 20.0 20.8 54.8 38.6 83.6
MI 5 13 26 45 70 103 146 199 263 339 428
p ¼ ð0;1Þ=K 1.5 3.0 3.8 8.4 9.0 13.1 20.2 32.8 65.5 137.7 360.6
MI 5 13 26 46 74 111 159 219 292 380 484
p ¼ ð1;1Þ=K 1.5 3.0 3.8 6.0 7.0 9.5 12.9 18.0 27.4 27.4 42.1
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Z
Q
ðut þ ~r �~f ðuÞÞ/d~x ¼ 0: ð19Þ
The usual weak formulation results after spatial integration by parts
Z
Q

ut/d~xþ
Z

oQ

~f ðuÞ �~n
� �

/ds�
Z

Q

~f ðuÞ � ~r/d~x ¼ 0: ð20Þ
For the DG discretization the exact solution u is next replaced by a piecewise polynomial approximation uh. As this approx-
imation is in general discontinuous across grid cell interfaces, the surface flux integrals are not well defined. To get an unique
solution and a stable discretization, the normal flux~f �~n in the surface integral is replaced with a numerical flux function g~n,
which depends on the values from both sides of the grid cell interface. Independent of the choice of the numerical flux g~n,
there are a lot of different ways of how to implement the semi-discrete DG scheme. The implementations differ in terms of
‘evaluation of the integrals and representation of the approximation uh’. Hesthaven and Warburton introduced the quadra-
ture free nodal DG scheme [25], where they used nodal basis functions fwjgj¼1;...;MI

for the approximation uh and for the test
functions. Recently, Dumbser et al. introduced an interesting novel quadrature free approach, where they constructed a local
flux expansion in space and time [14]. In this work, we choose a more ‘classic’ approach, where we use the modal basis func-
tions f/jgj¼1;...;N to define the test functions and the DG polynomial
uhð~x; tÞ :¼
XN

j¼1

ûjðtÞujð~xÞ for ~x 2 Q ; ð21Þ
with the time dependent modal DOF fûjðtÞgj¼1;...;N . In standard modal DG implementations, the evaluation of the integrals is
usually done with Gauss integration. For instance we get the following approximation for the first volume integral
Z
Q

f1ðuhÞ
ou
ox1
ð~xÞd~x �

Xðpþ1Þd

j¼1

f1ðuhð~vjÞÞ
ou
ox1
ð~vjÞxj;

:¼ K1;GP�f 1; ð22Þ
where xj are the Gauss weights,~vj the Gauss positions, �f 1 the vector of flux evaluations and K1;GP the integration matrix with
ðK1;GPÞij :¼ oui

ox1
ð~vjÞxj; i ¼ 1; . . . ;N; j ¼ 1; . . . ; ðpþ 1Þd: ð23Þ
We note that uhð~vjÞ is evaluated using (21). If we consider a hexahedron with a p ¼ 5 approximation, we get ðpþ 1Þd ¼ 216
evaluations with this strategy for the approximation of the volume integrals. We will show in the next subsection how to
make use of the nodal elements to reduce the computational complexity of modal implementations.

3.1. The modal DG scheme with nodal integration

We first introduce the nodal interpolation of the nonlinear flux function according to (8)
f1ðuhð~xÞÞ � f1;Ið~xÞ :¼
XMI

i¼1

~f 1;iwið~xÞ; ð24Þ
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where the nodal DOF is calculated as ~f 1;i ¼ f1ðuhð~niÞÞ. The evaluation of the DG polynomial (21) at the nodal points can be
done using the Vandermonde matrix (5)
~u ¼ Vû; ð25Þ
yielding the nodal DOF of the flux as ~f 1;i ¼ f1ð~uiÞ. As a next step, the interpolation of the flux function is inserted into the vol-
ume integral and integrated exactly
Z

Q
f1ðuhÞ

ouj

ox1
ð~xÞd~x �

Z
Q

f1;Ið~xÞ
ouj

ox1
ð~xÞd~x;

:¼ K1~f 1; ð26Þ
where we introduced the general stiffness matrix
K1 :¼
Z

Q

ou
ox1
ð~xÞwTð~xÞd~x ¼

Z
Q

ou
ox1
ð~xÞuTð~xÞd~xV�1 ¼: K1;MV�1: ð27Þ
The evaluation of the stiffness matrix can be done with Gauss integration in an initial phase of the simulation, yielding a
quadrature free approach. The surface integrals are treated in a similar manner. Comparing computational complexity we
only need MI evaluations to calculate the volume integrals. Considering for instance the p ¼ 5 ðp ¼ ð1;1ÞÞ hexahedron we
get MI ¼ 105. Furthermore as the nodal elements support an interpolation in the volume and on the boundary at the same
time no additional evaluations of the polynomial are needed to calculate the surface integrals. We note that the modal DG
with nodal integration and the nodal DG [26] are strongly related. In fact the modal DG scheme with nodal integration can be
interpreted as a nodal DG scheme using modal DOF and the Vandermonde matrix for the calculation of the nodal DOF (25).
Reducing the accuracy of quadrature and relying on nodal products when computing nonlinear fluxes naturally introduces
an error, known in spectral methods as aliasing [22]. However, the scheme maintains its full linear accuracy and the poten-
tial for aliasing driven instabilities is well understood and can, if needed, be controlled by the use of a weak modal filter (see
[26]). In the present work, however, we have not found any need for this additional stabilization for any of the examples
presented later.

4. Computational examples and validations

In the following we shall present a number of examples of increasing complexity to thoroughly validate the developed
scheme. The spatial discontinuous Galerkin scheme is integrated in time using the recently developed space-time expansion
(STE) approach [31,16], which allows an arbitrary high-order accurate local time-stepping.

4.1. Linear wave propagation

In this subsection the spatial accuracy of the nodal integration approach for a linear problem is investigated. We use the
linearized Euler equations (LEE) as a model problem for linear wave propagation
Ut þ ~r �~FðUÞ ¼ 0; ð28Þ
with the vector of the conservative variables U ¼ ðq0;u0;v 0;w0; p0ÞT and the LEE fluxes ~F :¼ ðF1; F2; F3ÞT :¼ ðA1U;A2U;A3UÞT

with the Jacobi matrices
A1 ¼

u0 q0 0 0 0
0 u0 0 0 1

q0

0 0 u0 0 0
0 0 0 u0 0
0 jp0 0 0 u0

0
BBBBBB@

1
CCCCCCA; A2 ¼

v0 0 q0 0 0
0 v0 0 0 0
0 0 v0 0 1

q0

0 0 0 v0 0
0 0 jp0 0 v0

0
BBBBBB@

1
CCCCCCA; A3 ¼

w0 0 0 q0 0
0 w0 0 0 0
0 0 w0 0 0
0 0 0 w0

1
q0

0 0 0 jp0 w0

0
BBBBBB@

1
CCCCCCA; ð29Þ
where U0 :¼ ðq0;u0;v0;w0; p0Þ
T is the background flow. As an example, a plane wave is initialized such that it contains only

fluctuations in the right moving characteristic wave with the Eigenvalue u0 þ c0
U ¼ RW ; ð30Þ
with W ¼ cW sinð~k �~xÞ and the eigenvector matrix
R ¼

n1 n2 n3
q0
2c0

q0
2c0

0 �n3 n2
n1
2 � n1

2

n3 0 �n1
n2
2 � n2

2

�n2 n1 0 n3
2 � n3

2

0 0 0 q0
2c0

q0
2c0

0
BBBBBBB@

1
CCCCCCCA
; ð31Þ



(a) 6 tetrahedra (b) 2 pentahedra (c) 6 pyramids

Fig. 4. Visualization of the different hybrid meshes.
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with c0 ¼
ffiffiffiffiffiffiffiffi
j p0

q0

q
. We choose the perturbation of the characteristic variable vector cW ¼ ð0; 0; 0; 10�3; 0ÞT , the normal vector

of the wave ~n ¼ ð1; 0; 0ÞT , the wave number vector ~k ¼ ðp; 0; 0ÞT and the background flow
U0 ¼ ð1; 0; 0; 0; j�1ÞT with j ¼ 1:4, resulting in c0 ¼ 1. The computational domain X :¼ ½0; 2�3 is split into eight regular

subdomains Xi ¼~xi þ ½0; 1�3; i ¼ 1; . . . ;8 with
Table 4
Experim

n

1
2
3
4

~x1 :¼ ð0;0; 0ÞT ; ~x2 :¼ ð1; 0;0ÞT ; ~x3 :¼ ð0;1; 0ÞT ;
~x4 :¼ ð0;0;1ÞT ; ~x5 :¼ ð1;1;0ÞT ; ~x6 :¼ ð0;1;1ÞT ;
~x7 :¼ ð1; 0;1ÞT ; ~x8 :¼ ð1;1;1ÞT : ð32Þ
For our h-refinement tests we introduce the parameter n P 1. For a given n, we first split every sub-domain Xi into n3 regular
hexahedral elements. To generate the hybrid mesh, we furthermore split the hexahedra in the domain i ¼ 1 into tetrahedra,
in the domains i ¼ 2;3;4 into prisms and in the domain i ¼ 8 into pyramids. We illustrate the different hexahedra splittings
in Fig. 4 (please note that the front pyramid is blanked for better visualization purpose). For n ¼ 1 the hybrid prototype mesh
consists of 21 grid cells. In Table 4 the experimental order of convergence (EOC) for this test case is shown for p ¼ 3 and
p ¼ 4. These results suggest that the order of the STE-DG discretization is pþ 1 in space and time. As expected, for the linear
problem the results did not change when we increased the interpolation order ~p or when we changed the grid points via the
parameters p. To further investigate the behavior of the discretization for different polynomial approximations, five config-
urations were tested. In the first configuration, a fixed grid with 23 hexahedral grid cells was used. We plot in Fig. 5 the L2

error norm of the pressure p0 for polynomial order p ¼ 1 up to p ¼ 8 with tend ¼ 20. For the next configurations, the hexahe-
dral base grid was further split into tetrahedra, prisms or pyramids, according to Fig. 4, resulting in 48, 16 and 48 grid cells,
respectively. In the last configuration, the hybrid grid with n ¼ 1 was used, resulting in 21 grid cells. Note that for the first
four configurations the time steps do not differ over the computational domain, thus the local time-stepping STE-DG scheme
reduces to a global time-stepping scheme. But for configuration five, the scheme runs in local time-stepping mode due to the
different grid cell types and their different in-spheres. It is interesting to compare the performances of the different grid cells
for this test case. Comparing the number of grid cells in the different configurations and the number of DOF, Fig. 5 shows that
the error norms do not differ much, thus uncovering a superior approximation behavior of the hexahedral grid cells com-
pared to the other types for this test case. Furthermore, if we compare the CPU time for the whole calculation, the hexahedral
discretization remains superior again, as it allows larger time steps, resulting in the following ranking of this performance
test: hexahedra (rel. CPU time t ¼ 1), prisms (rel. CPU time t � 4), tetrahedra (rel. CPU time t � 10) and pyramids (rel. CPU
time t � 20). Several investigations indicate the same trends for non-linear problems, especially for the Navier–Stokes
equations.

4.2. The Euler equations

In the following test, the influence of the recursion parameter p ¼ ðp3D;p2DÞ and the influence of different interpolation
orders ~p is investigated. We consider in this subsection the non-linear Euler equations
ental order of convergence for p ¼ 3 and p ¼ 4.

Nb cells Nb DOF L2ðp0Þ EOC Nb DOF L2ðqeÞ EOC

p = 3 p=4

21 420 5,03E�5 – 9.408 3,51E�6 –
168 3360 2,21E�6 4.5 75.264 1,22E�7 4.8
567 11.340 4,22E�7 4.1 19.845 1,68E�8 4.9
1344 26.880 1,22E�7 4.1 47.040 4,06E�9 4.9
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Fig. 5. Double logarithmic plot of L2 error versus the polynomial order for different element types and grids.
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Ut þ ~r �~FðUÞ ¼ 0; ð33Þ
with the vector of the conservative variables U ¼ ðq;qv1;qv2;qv3;qeÞT and the Euler fluxes ~F :¼ ðF1; F2; F3ÞT :
FlðUÞ ¼

qv l

qv1v l þ d1lp

qv2v l þ d2lp

qv3v l þ d3lp

qev l þ pv l

0
BBBBBB@

1
CCCCCCA; l ¼ 1;2;3: ð34Þ
Here, we use the usual notation of the physical quantities: q;~v ¼ ðv1;v2;v3ÞT ; p, and e denote the density, the velocity vector,
the pressure, and the specific total energy, respectively. The adiabatic exponent is j ¼ cp

cv
with the specific heats cp; cv depend-

ing on the fluid, and assumed to be constant for this test. The system is closed with the perfect gas equation of state:
p ¼ qRT ¼ ðj� 1Þq e� 1
2
~v �~v

� �
; and e ¼ 1

2
~v �~v þ cvT: ð35Þ
with the specific gas constant R ¼ cp � cv . The considered test case is a three-dimensional variation of the isentropic vortex
convection problem of Hu and Shu [27]
~rð~x; tÞ ¼~rvortex 	 ð~x�~x0 �~v0 � tÞ;

dv ¼ vmax

2p
exp

1� j~rj
r0

� �2

2

0
B@

1
CA;

~vð~x; tÞ ¼ ~v0 þ dv �~r;
T
T0
¼ 1� j� 1

2
dv
co

� �2

;

qð~x; tÞ ¼ q0
T
T0

� � 1
j�1

;

pð~x; tÞ ¼ p0
T
T0

� � j
j�1

:

ð36Þ
If we choose, the rotational axis of the vortex~rvortex ¼ ð0;0;1ÞT and q0 ¼ p0 ¼ R ¼ 1, then the standard two-dimensional prob-
lem is recovered. For our test problem we chose the background flow ðq0;~vT

0; p0Þ ¼ ð1;1;1;1;j�1Þ;j ¼ 1:4, the rotational axis
of the vortex~rvortex ¼ ð1;�0:5;1ÞT , the initial center of the vortex~x0 ¼ ð0:5;0:5;0:5ÞT , the amplitude of the vortex vmax ¼ 0:1,
the halfwidth of the vortex r0 ¼ 1 and the endtime of the simulation tend ¼ 4. The computational domain X :¼ ½0;5�3 with
exact boundary conditions prescribed. The solution to this problem at time t ¼ 2 with 63 p ¼ 5 hexahedra is shown in
Fig. 6. The results of tests with p ¼ 6 trial functions with different parameters p and/or different interpolation orders ~p
are listed in Tables 5–8.

The general observation is that by increasing the number of interpolation points, the error norm decreases and the CPU
time increases. We also compared the nodal integration to the standard Gaussian integration, where we chose 73 ¼ 343 ten-



Fig. 6. 3D isentropic vortex. Isosurfaces of density ðq ¼ 0:99977;99989;99998Þ.

Table 5
Results for different types of integration points for p ¼ 6 hexahedra. The domain X is subdivided into eight hexahedra.

Interpolation order ð~pÞ and p Nb Int points L2ðqÞ CPU time/EU (%)

~p ¼ 6;p ¼ ð0; 0Þ 117 1,9654E�05 100
~p ¼ 6;p ¼ ð1; 0Þ 124 1,7455E�05 107
~p ¼ 6;p ¼ ð0; 1Þ 147 1,8112E�05 120
~p ¼ 6;p ¼ ð1; 1Þ 154 1,6055E�05 121
~p ¼ 6;p ¼ ð2; 0Þ 136 1,7399E�05 110
~p ¼ 6;p ¼ ð2; 1Þ 166 1,5832E�05 125

~p ¼ 7;p ¼ ð0; 0Þ 160 1,7586E�05 127
~p ¼ 8;p ¼ ð0; 0Þ 214 1,6336E�05 154
~p ¼ 7;p ¼ ð4; 2Þ 512 1,4770E�05 255

Gauss Legendre points 637 1,4665E�05 403

Table 6
Results for different types of integration points for p ¼ 6 pyramids. The domain X is subdivided into six pyramids.

Interpolation order ð~pÞ and p Nb Int points L2ðqÞ CPU time/EU (%)

~p ¼ 6;p ¼ ð0; 0Þ 98 2,8744E�04 100
~p ¼ 6;p ¼ ð1; 0Þ 106 2,8256E�04 109
~p ¼ 6;p ¼ ð0; 1Þ 103 1,7078E�04 107
~p ¼ 6;p ¼ ð1; 1Þ 111 1,6332E�04 110

~p ¼ 7;p ¼ ð0; 0Þ 138 2,7298E�04 127
~p ¼ 8;p ¼ ð0; 0Þ 187 1,5537E�04 181
~p ¼ 7;p ¼ ð1; 1Þ 159 1,0978E�04 136

Gauss Jacobi points 588 9,8771E�05 425

G.J. Gassner et al. / Journal of Computational Physics 228 (2009) 1573–1590 1583
sor product Jacobi Gauss points for the volume integrals and 72 ¼ 49 tensor product Jacobi Gauss points for each of the sur-
face integrals. Although the results with standard Gauss cubature are slightly more accurate, comparing CPU times clearly
confirms that the nodal type integration is more efficient.



Table 7
Results for different types of integration points for p ¼ 6 prisms. The domain X is subdivided into eight hexahedra which are further subdivided into two
prisms, yielding 16 grid cells.

Interpolation order ð~pÞ and p Nb Int points L2ðqÞ CPU time/EU (%)

~p ¼ 6;p ¼ ð0; 0Þ 101 1,4853E�05 100
~p ¼ 6;p ¼ ð1; 0Þ 110 1,4235E�05 109
~p ¼ 6;p ¼ ð0; 1Þ 116 1,2260E�05 114
~p ¼ 6;p ¼ ð1; 1Þ 125 1,2250E�05 118

~p ¼ 7;p ¼ ð0; 0Þ 141 1,4210E�05 127
~p ¼ 8;p ¼ ð0; 0Þ 188 1,2925E�05 154
~p ¼ 7;p ¼ ð0; 1Þ 165 1,1562E�05 141

Gauss Jacobi points 588 1, 1006E-05 424

Table 8
Results for different types of integration points for p ¼ 6 tetrahedra. The domain X is subdivided into six tetrahedra.

Interpolation order ð~pÞ and p Nb Int points L2ðqÞ CPU time/EU (%)

~p ¼ 6;p ¼ ð0; 0Þ 84 1,414E�04 100
~p ¼ 7;p ¼ ð0; 0Þ 120 1,4386E�04 113
~p ¼ 8;p ¼ ð0; 0Þ 165 1,3945E�04 135
Gauss Jacobi points 539 1,3790E�04 399
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4.3. Compressible Navier–Stokes equations

The three-dimensional unsteady compressible Navier–Stokes equations with a source term is given as
Ut þ ~r �~FðUÞ � ~r �~FvðU; ~rUÞ ¼ S; ð37Þ
with the vector of the conservative variables U, the non-linear Euler fluxes ~F :¼ ðF1; F2; F3ÞT and the diffusion fluxes
~Fv :¼ ðFv

1 ; F
v
2 ; F

v
3Þ

T :
Fv
l ðU; ~rUÞ ¼

0
s1l

s2l

s3l

sljv j � ql

0
BBBBBB@

1
CCCCCCA; l ¼ 1;2;3: ð38Þ
The viscous stress tensor is given by
s :¼ lð~r~v þ ð~r~vÞT � 2
3
ð~r �~vÞIÞ; ð39Þ
and the heat flux as ~q ¼ ðq1; q2; q3Þ
T with
~q :¼ �k~rT; with k ¼ cpl
Pr

; ð40Þ
Here, the viscosity coefficient l and the Prandtl number Pr depend on the fluid, and they are assumed to be constant. If we
choose
S ¼ a

cosðbÞðdk�xÞ
cosðbÞAþ sinð2bÞakðj� 1Þ
cosðbÞAþ sinð2bÞakðj� 1Þ
cosðbÞAþ sinð2bÞakðj� 1Þ

cosðbÞBþ sinð2bÞaðdkj�xÞ þ sinðbÞ dk2lj
Pr

� �

0
BBBBBBB@

1
CCCCCCCA
; ð41Þ
with b :¼ kðx1 þ x2 þ x3Þ �xt;A ¼ �xþ k
d�1 ðð�1Þd�1 þ jð2d� 1ÞÞ and B ¼ 1

2 ððd
2 þ jð6þ 3dÞÞk� 8xÞ, the analytical solution

to (37) and (41) is given by
U ¼ ðsinðbÞaþ 2; sinðbÞaþ 2; sinðbÞaþ 2; sinðbÞaþ 2; ðsinðbÞaþ 2Þ2ÞT : ð42Þ
For our test we choose the coefficients j ¼ 1:4; Pr ¼ 0:72, l ¼ 0:0001;R ¼ 287:14 and a ¼ 0:5;x ¼ 10; k ¼ p with the dimen-
sion of the problem d ¼ 3. We solve this problem with the recently developed modal STE-DG scheme for compressible Na-



Table 9
Experimental order of convergence for p ¼ 4 and p ¼ 5 with p ¼ ð0; 0Þ and tend ¼ 1:0.

n Nb cells Nb DOF L2ðqeÞ EOC Nb DOF L2ðqeÞ EOC

p ¼ 4 p ¼ 5

2 168 5.880 6,13E�3 – 9.408 3,80E�3 –
4 1344 47.040 1,91E�4 5,0 75.264 9,36E�5 5,3
8 10752 376.320 4,32E�6 5,5 602.112 1,54E�6 5,9
16 86016 3.010.560 1,22E�7 5,1 4.816.896 2,38E�8 6,0
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vier–Stokes equations [16], with the nodal modifications discussed above. The main building block of this discretization is a
new weak formulation, where integration by parts is used twice, circumventing the need for resorting to a mixed first order
system and thus avoiding the need for additional auxiliary variables. For the numerical fluxes we choose approximate
Riemann solvers for both, the hyperbolic part and the parabolic part. For the approximation of the Euler flux we choose
the HLLC flux [38] and for the approximation of the viscous fluxes the recently developed dGRP flux [15,16,32], which
can be interpreted as a natural extension of the classic interior penalty flux [34] for the Laplace equation to the viscous terms
of the compressible Navier–Stokes equations. The results of a convergence test with the hybrid grids from example 4.1 are
listed in Table 9 for p ¼ 4 and p ¼ 5 with p ¼ ð0; 0Þ, where we used tend ¼ 1 and periodic boundary conditions. The results
show that the optimal order of convergence EOC ¼ pþ 1 is achieved.

We list the average CPU time per element update (EU) and per degree of freedom for the 3D compressible Navier–Stokes
equations with p ¼ 6 (84 DOF/Element) in Table 10. Based on the investigations in Section 4.2, we chose for every grid cell
type the most efficient combination (in terms of accuracy versus cpu time) of the parameters p and the interpolation order ~p.
All CPU times were measured on one processor of a Intel Xeon Dual Core CPU with 2.66 GHz. An equivalent measurement for
a 6th order compact finite difference scheme with 4th order Runge–Kutta time integration, [2], on the same CPU yields

56 ls.

4.3.1. Polygonal meshes
In this section preliminary results for a DG discretization with polygonal meshes are shown. We propose to apply the

recursion based algorithm to define efficient sets of interpolation points for polygonal grid cells. Numerical investigations
indicate that for a general grid cell the shape dependent parameter p�, which is the maximal possible interpolation order
with surface points only, has the value ’number of sides minus one’, which we choose for all grid cell types (2D and 3D) dis-
cussed in this work. Starting from a triangle mesh the corresponding dual mesh is constructed and used as polygonal mesh,
Fig. 7(a). The primal triangle mesh is no longer needed as it is only used to construct the dual mesh. The resulting polygonal
mesh contains elements with 4–7 sides. For the distribution of the interpolation points two different strategies are used for
an approximation with p ¼ 3. For the first strategy we directly use the recursion algorithm (14) with a fixed recursion
parameter p2D for all elements. If we choose p2D ¼ 0, test configuration A shown in Fig. 7(b), the resulting interpolation grid
is only distributed at grid cell boundaries, as all grid cells have at least four sides. As in the discussion above it is favorable for
non-linear problems to use more interpolation points, i.e. increasing the recursion parameter p2D. In Fig. 8(a) the recursion
parameter is set to p2D ¼ 3, test configuration B, for all grid cells. In this extreme case where quadrilaterals (4 sides, 3 recur-
sively defined interior point layers) and heptagons (7 sides, 0 recursively defined interior point layers) arise, the resulting
point distribution is non-uniform and seems to be less well suited. To avoid this, our second strategy is to fix the number
of recursions for every grid cell type, thus introducing the recursion parameter p2D independently for every grid cell type.
In Fig. 8(b) the interpolation grid for a fixed recursion number rmax ¼ 1, test configuration C, with a second order inner point
distribution is shown, corresponding to the parameter p2D ¼ 2 for quadrilaterals up to p2D ¼ 5 for heptagons. To validate this
discretizations the compressible Navier–Stokes equations with a source term are considered, and we use the reduced two-
dimensional version of the previous example with the same parameters, except for the parameter k which we change from p
to 2p and the dimension d from 3 to 2. For the grid refinement, four different regular triangle grids with typical mesh size h
are constructed and then converted to polygonal meshes, similar to what is shown in Fig. 7(a). The pre-computation of the
surface and volume integral matrices is done on sub triangles with standard Gaussian integration. In Table 11 the results for
configuration A and the results for the reference computation on the primal triangular grid with tend ¼ 0:5 and exact bound-
ary conditions are shown. We notice first that the expected order of convergence is achieved. Considering efficiency, the re-
sults on the primal mesh are more accurate, whereas the CPU time for configuration A is tCPU ¼ 378s and the CPU time for the
Table 10
CPU times for the 3D compressible Navier–Stokes equations with ðp ¼ 6Þ STE-DG discretization (7th order in space and time).

Interpolation order ð~pÞ and p Element type CPU time/EU/DOF (ls)

~p ¼ 6;p ¼ ð1; 1Þ Hexahedron 39,9
~p ¼ 7;p ¼ ð1; 1Þ Pyramid 43,1
~p ¼ 6;p ¼ ð0; 1Þ Prism 31,5
~p ¼ 6;p ¼ ð0; 0Þ Tetrahedron 27,7
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primal configuration is tCPU ¼ 594 s. The reasons for the CPU time advantage is that the resulting polygonal configuration has
only about half the DOF and allows larger (explicit) time steps. To account for the non-linearity of the Navier–Stokes fluxes,
computations with configuration B and C are performed and corresponding results are listed in Table 12. We notice that the
accuracy of the solution is improved, approaching the quality of the primal configuration solution. As expected, the results of
configuration C are more accurate when compared to the results of configuration B. Considering the efficiency of the com-
putations, the CPU time for test B is tCPU ¼ 380 s and for test C tCPU ¼ 398 s showing a large potential for DG discretizations
on polygonal meshes compared to traditional triangular meshes. In future works we will investigate the influence of differ-
ent node distribution strategies and recursion parameters for polygonal meshes and furthermore investigate the applicabil-
ity of the recursion algorithm (17) with ‘p� ¼ number of sides minus 1’ for polyhedral meshes in three-dimensions.

4.3.2. Boundary layer instability
We consider in this example the evolution of a Tolmien–Schlichting wave in a subsonic compressible boundary layer. The

computational domain X extends from x1 ¼ 337 to x1 ¼ 890 and x2 ¼ 0 to x2 ¼ 22:35. We choose subsonic inflow and out-
flow boundary conditions and at x2 ¼ 0 isothermal wall conditions with Tw ¼ 296 K. The initial solution of the computation



Table 11
Experimental order of convergence for p ¼ 3 (10 DOF per grid cell) for reference test on primal triangular mesh and for test configuration A.

h Nb cells L2ðqeÞ EOC Nb cells L2ðqeÞ EOC

Triangular configuration Configuration A

0,2 62 2,44E�3 – 42 1,28E�2 –
0,1 226 1,92E�4 3,7 134 1,31E�3 3,3
0,05 896 1,07E�5 4,3 489 7,16E�5 4,2
0,025 3595 6,42E�7 4,1 1878 4,77E�6 3,9

Table 12
Experimental order of convergence for p ¼ 3 (10 DOF per grid cell) for test configuration B and C.

h Nb cells L2ðqeÞ EOC L2ðqeÞ EOC

Configuration B Configuration C

0,2 42 9,55E�3 – 5,17E�3 –
0,1 134 7,22E�4 3,7 4,25E�4 3,6
0,05 489 3,38E�5 4,4 2,64E�5 4,0
0,025 1878 1,84E�6 4,2 1,64E�6 4,0
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is obtained from a similarity solution with Mach number M1 ¼ 0:8 and T1 ¼ 280 K. The Reynolds number Re :¼
q1v1d1
lðT1Þ ¼ 1000, based on the displacement thickness at the inflow d1. Using d1 as the reference length, we get d1 ¼ 1:0 at

the inflow and the boundary layer thickness d99 ¼ 2:95 and d99 ¼ 4:8 at the inflow and outflow, respectively. The tempera-
ture dependence of the viscosity l is modeled using Sutherland’s law
|v
1’

|

lðTÞ ¼ lðT1ÞT3=2 1þ Ts

T þ Ts
; ð43Þ
with lðT1Þ ¼ 1:73510�5 kg ms and Ts ¼ 110:4 K.
The inflow at x1 ¼ 337 is superimposed with a forcing term, composed of the eigenfunction of the Tolmien–Schlichting

wave with the fundamental frequency x0 ¼ 0:0688. For a detailed description of the similarity solution and the eigenfunc-
tion we refer to Babucke et al. [1]. The computational domain is subdivided into 48	 22 regular quadrilaterals and discret-
ized with a p ¼ 6ðp2D ¼ 1Þ STE-DG scheme, resulting in 29568 DOF. The endtime of the simulation was set to tend

T0
¼ 37, where

T0 ¼ 2p
x0
� 92, to ensure a periodic solution. To analyze our results we apply a discrete Fourier analysis using one period of the

forcing frequency T0 from t
T0
¼ 36 to t

T0
¼ 37. We plot the maximal amplitude of v1 with respect to x2 as a function of x1 in

Fig. 9. For comparison, corresponding results obtained with a 6th order compact finite difference code with 330	 150 grid
points and 4th order Runge–Kutta time integration [1] are included, showing good agreement. We furthermore plot the
amplification rate ai of the velocity v1 based on the maximal amplitude in Fig. 9. Again, the result is in good agreement with
the reference result [1] and the predictions of linear stability theory.
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Fig. 9. Maximum amplitudes of v1 (left). Amplification rate ai of u1 based on maximum amplitude (right).



Fig. 10. Visualization of the grid for the sphere example.

Fig. 11. Contour plot of the instantaneous velocity magnitude j~v j ¼ 0:0; . . . ;0:3478 and pressure p ¼ 0:688; . . . ; 0:762.
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4.3.3. Flow past a Sphere at Re ¼ 300
We consider in this example a sphere with radius r ¼ 1 centered at~x0 ¼ ð0;0;0ÞT and solve the 3D unsteady compressible

Navier–Stokes equations with Mach number M ¼ 0:3 and Reynolds number Re ¼ 300 based on the diameter of the sphere.
The computational domain extends from x1 ¼ �20 to x1 ¼ 100 and x2; x3 ¼ �30. The grid consists of �160,000 tetrahedra,
where the wake of the sphere is resolved with h � 0:4. The surface of the sphere is discretized using triangles with
h � 0:1. To capture the right geometry of the sphere, tetrahedra with curved boundary surfaces are used. We plot the cut
Fig. 12. Isometric view of k2 isosurface.



Table 13
Force coefficients and Strouhal number.

Cd DCd Cl DCl Str

0.673 0.0031 �0.065 0.015 0.135
Tomboulides [37] 0.671 0.0028 – – 0.136
Johnson and Patel [28] 0.656 0.0035 �0.069 0.016 0.137

t
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Fig. 13. Drag and lateral force coefficient.
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of the grid on a plane with ~nplane ¼ ð0;1;0ÞT in Fig. 10. For the calculation a p ¼ 3 STE-DG scheme is used, resulting
in �3,000,000 DOF. A contour plot of the velocity magnitude, Fig. 11, shows that the boundary layer is resolved within 1–
2 tetrahedral elements. In Fig. 12 the structure of the vortices are shown using the k2 vortex detection criterium. We list
in Table 13 the resulting force coefficients, the corresponding oscillating amplitudes and the Strouhal number Str. For
comparison, results from Tomboulides [37] and Johnson and Patel [28], obtained using an incompressible simulation, are
listed as well, showing food agreement. In Fig. 13 we plot the drag coefficient Cd and the lateral force coefficient Cl versus
time t.
5. Conclusion

Part one of this paper deals with a framework for efficient polynomial interpolation on polymorphic grid cells, i.e. the
definition of a nodal interpolation basis and the associated operators. In our framework, for non simplex grid cells the num-
ber of nodal basis functions is higher than the number of modal basis functions. We showed that one way to get a reasonable
Vandermonde matrix is to use the singular value decomposition framework to build a least squares inverse. The properties of
these Vandermonde matrices (and the corresponding interpolation) depend solely on the position of the interpolation points.
We consider in this paper only interpolation points with a symmetric distribution, points which support an interpolation of
order p in the volume of the grid cell and simultaneously an interpolation of the same order on each of the faces of the grid
cell. This is used to introduce a simple construction guideline, which is based on a recursive algorithm starting from a given
surface points distribution. Using a set of 1D points, we can successively define points for 2D faces and consequently define
points for 3D volumes.

In the second part of the paper we introduced a novel integration framework for modal discontinuous Galerkin schemes.
Borrowing from nodal methods a mixed quadrature free modal–nodal DG scheme is constructed. If we consider an existing
modal DG code with Gauss type integration, it is easy to implement the nodal type integration, as essentially only the inte-
gration matrices have to be changed. As an example the nodal based integration was combined with the recently developed
modal space-time expansion discontinuous Galerkin scheme. Numerical investigations indicate a four fold reduction in com-
putational time without impacting the accuracy.
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